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1 Motivation

• Acceleration is a fundamental phenomenon in optimization, and it is important to understand its nature from
a geometrically inclined perspective.

• Is there a principled way to understand acceleration and create accelerated algorithms in general?

• What does it mean to be able to optimize fast?

Thinking about the acceleration phenomenon without delving into the topological aspects of the underlying space
where an algorithm is supposed to operate, does not (rather cannot) provide any rich answers. The richer un-
derstanding therefore has to be built via going into continuous time, via the language of differential equations
(differential geometry).

The goal therefore is to

• understand the acceleration phenomena in continuous time first,

• deriving the corresponding continuous time convergence rates (e.g., via a Lyapunov analysis), then

• discretizing (numerically integrate) the differential equations to obtain discrete algorithms which

– are stable,

– preserve the continuous time rates, and

– respect the underlying geometry.

There is a long line of recent work [5, 6, 7, 4, 1, 2] that has been able to formalize these notions to a great extent.
This paper considers the popularly known variants of accelerated algorithms, and tries to argue about their stability
properties. The paper also creates a class of accelerated algorithms that are more stable and fast.

Consider the optimization problem
min
x∈M

f(x),

where M is a d dimensional smooth manifold (e.g., (Rd,Ostandard,Asmooth)), and f : M → R is a continuously
differentiable function. The paper considers two popularly used variants of acceleration

1. Classical momentum (CM): Also known as the heavy ball method

vk+1 = µvk − ε∇f(xk), xk+1 = xk + vk+1. (1.1)

2. Nesterov’s accelerated gradient (NAG):

vk+1 = µvk − ε∇f(xk + µvk), xk+1 = xk + vk+1. (1.2)

In both the methods, ε > 0 is the step-size, and µ ∈ (0, 1) is the momentum factor. Both these methods are some
naive discretizations of a particular 2nd order differential equation with a friction term. Since there are many ways
to discretize a continuous system, the question is which discretization is the most suitable one for optimization in
terms of the above stated goals?
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2 Background

• A solution to a differential equation provides a vector field X ∈ Γ(TM) whose flow

Φ: R×M →M

(h,x(t)) 7→ Φ(h,x(t)) = x(t+ h)

is an element of the one parameter group of diffeomorphisms on M .

• In physical systems, a Hamiltonian encodes the laws of motion. These laws of motion typically correspond to
conservation of quantities like energy, or angular momentum (through some symmetry via Noether’s theorem).
The Hamiltonian is a function which given a point (x,p) ∈ T ∗M on the phase space, gives us the energy of
the total system at that state. Here x ∈ M is the position and p ∈ T ∗xM is the momentum at the point x.
With an analogy from classical mechanical systems, we will first consider the standard classical Hamiltonian

H(x,p) =
‖p‖22
2m︸ ︷︷ ︸

Kinetic energy

+ f(x)︸︷︷︸
Potential energy

, (2.1)

where m ∈ R++ is the mass of the particle under motion.

• Conservative Hamiltonian systems have constants of motion which gives us the system of classical Hamiltonian
differential equations

dx(t)

dt
=

∂

∂p
H(x(t),p(t)) =

p(t)

m
(2.2a)

dp(t)

dt
= − ∂

∂x
H(x(t),p(t)) = −∇f(x(t)) (2.2b)

• Generically, dynamical systems on a d dimensional smooth manifold M corresponds to preservation of the
non-degenerate symplectic structure on T ∗M

ω ∈ Γ(T ∗M ⊗ T ∗M),

if and only if it is a conservative Hamiltonian system, i.e., there exists a Hamiltonian function H on T ∗M
such that the corresponding Hamiltonian vector field X and flow Φ satisfy

LXω(t) = 0 ⇐⇒ d

dt
H(x(t),p(t)) = 0 (2.3a)

≡ Φ∗tω = ω, (i.e., Φt is a symplectomorphism ∀ t) (2.3b)

≡
(
∂Φ(t, z0)

∂z0

)>
Ω

(
∂Φ(t, z0)

∂z0

)
= Ω, (2.3c)

where Ω :=

[
0d Id
−Id 0d

]
contains the coordinates functions of ω under the Darboux chart.

• Naive discretizations (like explicit or implicit Euler methods) of general Hamiltonian differential equations
lead to bleeding off of the energy with time and therefore are not the right way to discretize Hamiltonian
systems. Symplectic integrators developed in mid 20th century allow us to discretize these differential equation
without losing much energy, and therefore allows us to take much larger steps as they are stable and have
better error control properties.

• We however, want to decrease both potential energy f(x) and the kinetic energy
‖p‖22
2m at the same time

at a controlled pace for desired convergence rates in continuous time. Symplectic integrators on conserved
Hamiltonian systems tend to oscillate around the minimum. Therefore we want to dissipate energy so that

both ∇f(x(t)) and p(t)
m suitably go to 0 with t.
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Figure 1: Stability of a symplectic integrator on a quadratic optimization problem
(Taken from [1])

• (Poincaré 1899, Cartan 1913) Any smooth manifold has 6 fundamental classes of diffeomorphisms, one of
which is the set of flows called the conformal symplectic flows, Diffcω, which contains the diffeomorphisms that
preserve the symplectic form ω up to constants. Such systems dissipate energy (symplectic area), i.e., if Φ is
a flow of a conformal symplectic vector field X, then

LXω = −γω, (2.4a)

≡ Φ∗tω = e−γtω, (2.4b)

≡
(
∂Φ(t, z0)

∂z0

)>
Ω

(
∂Φ(t, z0)

∂z0

)
= e−γtΩ, (2.4c)

≡ ωt = e−γtω0, (2.4d)

for some γ > 0. Conformal symplectic transformations can be composed and form the conformal group.

• If X is the vector field solution of the classical Hamiltonian, then the differential equations corresponding to
the classical conformal Hamiltonian system is

dx(t)

dt
= ∇pH(x(t),p(t)) , (2.5a)

dp(t)

dt
= −∇xH(x(t),p(t))− γp(t) , (2.5b)

=⇒ d

dt
H(x(t),p(t)) = − γ

m
‖p(t)‖22 ≤ 0,

or concisely, for z(t) :=

[
x(t)
p(t)

]
, Ω =

[
0d Id
−Id 0d

]
, and D :=

[
0d 0d
0d Id

]
, the classical conformal Hamiltonian

differential equations (2.5) can be written as

ż = Ω∇H(z)︸ ︷︷ ︸
=:C(z)

+ (−γDz)︸ ︷︷ ︸
=:D(z)

(2.6)

• Recently [2], it has been shown that conformal symplectic integrators are able to preserve the continuous
time rates of convergence up to a controlled error, i.e., they are ‘rate matching’ up to negligible error. The
continuous time rate can be obtained by a Lyapunov analysis for a given Hamiltonian function (time vary-
ing). In other words, symplectic integrators provide stability of critical points and preserves continuous time
convergence rates, therefore it is possible to take much larger steps.

3 Conformal Symplectic Integration

• Associating flows ΦCt and ΦDt to respective vector fields of the terms C(z) and D(z) in Equation (2.6), we can
approximately construct the total flow Φt of Equation (2.6) by composing the individual flows. To construct
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the numerical map Ψh of the continuous flow Φt, we first approximate the conservative part ΨC
h of the system

ż = Ω∇H(z), and then the dissipative part ΦDh of the system ż = −γDz, which can be integrated exactly as

ΨD
h : (x,p) 7→ (x, e−γhp). (3.1)

To approximate ΦCt , we can use any standard symplectic integrator. Considering the symplectic Euler method,
we have

ΨC
h : (xk,pk) 7→ (xk+1,pk+1) , where it can be either

ΨC1

h : pk+1 = pk − h∇xH(xk,pk+1) , xk+1 = xk + h∇pH(xk,pk+1) , (3.2)

or, ΨC2

h : xk+1 = xk + h∇pH(xk+1,pk) , pk+1 = pk − h∇xH(xk+1,pk) . (3.3)

Note that they are implicit, but if H is separable in x and p as in our case, it turns into an explicit update
rule.

• We can create the total numerical flow Ψh as

1. (Dissipative Symplectic Euler method): ΨC1

h ◦ΨD
h , or ΨC2

h ◦ΨD
h ,

2. (Dissipative Leapfrog method): ΨD
h/2 ◦ΨC1

h/2 ◦ΨC2

h/2 ◦ΨD
h/2.

Definition 3.1 (Order of a symplectic integrator). A numerical map Ψ of a continuous flow Φ is of order
r ≥ 1 if ‖Ψh(z)− Φh(z)‖2 = O

(
hr+1

)
for all z ∈ T ∗M .

Theorem 3.2. Both integrators 1 and Integrator 2 are conformal symplectic, i.e., they both satisfy Equa-
tion (2.4c) exactly. Integrator 1 is of order 1, and Integrator 2 is of order 2.

Remark 3.3. The numerical map ΨC1

h ◦ΨD
h is nothing but the Classical Momentum (CM) method (1.1) for

the classical Hamiltonian (2.1), which from Theorem 3.2 is a conformal symplectic integrator of order 1.

Remark 3.4. The numerical map ΨD
h/2 ◦ΨC1

h/2 ◦ΨC2

h/2 ◦ΨD
h/2, for the classical Hamiltonian (2.1) can be written

as

xk+1/2 = xk + µvk, vk+1 = µvk − ε∇f(xk+1/2), xk+1 = xk+1/2 + vk+1, (3.4)

which will be the Nesterov’s Accelerated Gradient (NAG) method if we replace xk+1/2 → xk in the third
update above. NAG is an integrator of order 1, but is not conformal symplectic, rather contracts the
symplectic form as

ωk+1 = e−γh
[
I− h2

m
∇2f(xk)

]
ωk +O

(
h3
)
. (3.5)

The spurious dissipation in NAG may improve the convergence rate sightly, but at the cost of making the
method less stable.

• The paper also asks for which dynamical systems, CM and NAG turn out to be 2nd order integrators of.

– Both their Shadow Hamiltonian dynamical systems depend on the step-size h (reflecting upon the intrinsic
behavior of the discrete time algorithm). If we set h → 0 in both their dynamical systems, we obtain a
2nd order differential equation

ẍ + γẋ = − 1

m
∇f(x),

which is of the same form obtained in [SBC16] ‘A differential equation for modeling Nesterov’s accelerated
gradient descent method: Theory and insights’, up to γ being depending on t.

– The perturbed system for CM turns out to be conformal Hamiltonian, contrary to that of NAG. Be-
ing a conformal Hamiltonian system allows structure preservation and their conformal symplectic dis-
cretizations tend to be more stable since perturbed trajectories are always close to that of the original
Hamiltonian dynamics.
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4 A dissipative Relativistic system

• We, in optimization (unlike in physics) can choose our own Hamiltonian system, and define a geometry with
properties we are interested in. The meaning of acceleration will not change, but its characterization will,
depending on the Hamiltonian function.

• For the classical Hamiltonian i.e., Equation (2.1), since time is independent of space (like in Newtonian
spacetime, that is parabolic), large magnitudes of gradient can be lead to large momentum. This leads to
large spatial speed, and cause position updates to diverge.

• In relativistic spacetime physics, space and time carry no sharp distinctions. The base space is a (d + 1)
dimensional space called Minkwoski spacetime (hyperbolic). Distances on spacetime arise through a Lorentzian

metric under which an infinitesimal distance ds satisfies (ds)2 = −(cdt)2 + ‖dx‖22, i.e., no particle can
travel faster than c (a universal constant in the physical world). This imposes constraint on the geometry
(hyperbolic) where trajectories take place. Therefore, by discretizing a relativistic system we can hope to
create optimization algorithms that are more stable.

• The relativistic Hamiltonian (in contrast to the classical Hamiltonian (2.1)) is now defined as

H(x,p) = c

√
‖p‖22 +m2c2 + f(x), (4.1)

and its corresponding relativistic conformal Hamiltonian dynamics is gives by

dx(t)

dt
=

cp(t)√
‖p(t)‖22 +m2c2

(4.2a)

dp(t)

dt
= −∇f(x(t))− γp(t) (4.2b)

Note from Equation (4.2a) how ‖ẋ‖2 is bounded even for large ‖p(t)‖2.

• The corresponding dissipative symplectic Euler numerical map ΨC1

h ◦ΨD
h is an order 1 conformal symplectic

integrator, and is exactly CM if c→∞.

• The corresponding dissipative leapfrog numerical map ΨD
h/2 ◦ΨC1

h/2 ◦ΨC2

h/2 ◦ΨD
h/2 is an order 2 conformal sym-

plectic integrator. Just like NAG is a deviation from this classical version of this integrator (Equation (3.4)),
we can obtain a family of numerical maps by introducing a convex combination αxk+1/2 + (1 − α)xk for
α ∈ [0, 1], with α = 1 corresponding to the conformal leapfrog version (order 2), and α = 0 to the Hessian
damping version.

Algorithm 1 Relativistic Gradient Descent

1: Input: x0,v0 ∈ Rd, ε, δ ≥ 0, µ ∈ (0, 1], α ∈ [0, 1]
2: for k ∈ Z+ do

3: xk+1 ← xk +
√
µ

µδ‖vk‖22+1
vk

4: vk+1/2 ←
√
µvk − ε∇f(xk+1/2)

5: xk+1 ←
(
αxk+1/2 + (1− α)xk

)
+ 1

δ‖vk+1/2‖22+1
vk+1/2

6: vk+1 ←
√
µvk+1/2

7: end for

In Algorithm 1, δ = 0 corresponds to the the leapfrog integrator for classical (non-relativistic) Hamiltonian
dynamics.

• It can be shown that when δ > 0 (relativistic), then∥∥xk+1 −
(
αxk+1/2 + (1− α)xk

)∥∥
2
≤ 1/δ,

showing that the spatial speed is always bounded irrespective of large magnitudes of gradient.
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5 Trade-off between stability and convergence rate

• Higher contraction, i.e., by introducing spurious dissipation in numerical method (like in NAG, Equation (3.5))
in the symplectic form leads to improved convergence rates, but at the cost of stability.

• A geometry/structure preserving integrator (like CM) may have lesser contraction (obeys conformal symplec-
ticity), but will have higher stability. Such integrators also better preserve the continuous time convergence
rates.

• The paper looks at a simple function f(x) = λ‖x‖22/2 for d = 1 and computes the eigenvalues of the update

rules

[
xk+1

pk+1

]
= Talg(h, λ,m, γ)

[
xk
pk

]
for alg ∈ {CM,NAG,RGD}.

Figure 2: Region of eigenvalues in C of the update operators to understand stability of CM (blue), NAG (green),

and RGD (black) (c→∞, α = 1, m = 1, γ = 1) with increasing step size h for f(x) = ‖x‖22/2 for d = 1.

The properties of the algorithm like stability, being conformal, convergence speeds, can be visualized from
the locus of the eigenvalues of the matrix Talg(h, λ,m, γ) as we increase the step-size h. For the case when
c→∞, and α = 1, the paper analytically finds that

hmax
NAG < hmax

CM < hmax
RGD.

6 Numerical Experiments

• For several popularly known hard (to optimize) functions, the paper shows that when hyper-parameters are
tuned using Bayesian optimization, there is a preference towards selecting α ≈ 1 (indicating benefits being
conformal), and δ > 0 (indicating benefits of being relativistic).

• In all cases, RGD is shown to be empirically much faster and stable than CM and NAG, even all the hyper-
parameters are tuned to be the best. The most interesting (and hard) ones are below:

Figure 3: Matrix completion of R100×100 3M = RS> for R,S ∈ R100×5 with entries i.i.d. N (1, 2). Sampling ratio
0.3. Solve minU,V ∈R100×5

∥∥Pobs(M − UV >)
∥∥
F

, using alternating minimization with initializations standard normal.
Number of observed entries 0.3× 100× 5.
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Figure 4: Lévi function: f(x, y) = sin2(3πx) + (x − 1)2
(
1 + sin2(3πy)

)
+ (y − 1)2

(
1 + sin2(2πy)

)
. The function is

highly non-convex, with global minimum at (1,1). On multiple runs, CM and NAG get stuck in local minima more
often then RGD.

Figure 5: Schwefel function: f(x) = ‖x‖1010, x ∈ R20.

Figure 6: Three-hump camel back function: f(x, y) = 2x2 − 1.05x4 + x6/6 + xy + y2. This function is multi-modal
with minima at (0, 0). Algorithms were initialized at (5, 5).

Figure 7: Rosenbrock function: f(x) =
∑n−1
i=1

[
100(xi+1 − x2i )2 + (xi − 1)2

]
, n = 1000. One global minima at 1.

One local minima at
[
−1,1d−1

]
. Has exponentially many saddle points of which 2 are actually hard to escape.

Initialized at x0,i = ±2 for i odd/even.
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